美图齐众专注资阳网站设计 资阳网站制作 资阳网站建设
资阳网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

一日一技:从PandasDataFrame的两个使用小技巧

正常情况下,我们只需要5行代码就能解决问题:

import pandas as pd
from sqlalchemy import create_engine


engine = create_engine('数据库链接URI', echo=False)
df = pd.read_excel('Excel文件路径')
df.to_sql(name='表名', con=engine)

但我发现,这个下载的文件有两个工作簿(Sheet),第一个Sheet叫做Overall,第二个Sheet叫做Result。我们需要的数据在Result这个工作簿中。那么,在使用Pandas读取时,需要这样写代码:

df = pd.read_excel('文件路径', 'Result')

第二个问题,是这个Excel表格的列名,包含了一些不能作为MySQL字段名的值,如下图所示:

图片

其中的空格、括号、百分号、&符号都不适合放到MySQL的字段名中。那么怎么快速批量把这些字符全部替换掉呢?可以使用如下的写法:

df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_').str.replace('(', '').str.replace(')', '').str.replace('%', 'percent_unit').str.replace('&', '_and_')

这样可以批量把所有列名转换为小写字母,并移除特殊符号。效果如下图所示:

图片

图片


本文题目:一日一技:从PandasDataFrame的两个使用小技巧
标题URL:http://www.zsjierui.cn/article/dhdjghi.html

其他资讯